博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
2013计算机视觉代码合集
阅读量:6498 次
发布时间:2019-06-24

本文共 11077 字,大约阅读时间需要 36 分钟。

申明:本文非原创,原文转载自:

 

一、特征提取Feature Extraction

  • SIFT [1] [][] []
  • PCA-SIFT [2] []
  • Affine-SIFT [3] []
  • SURF [4] [] []
  • Affine Covariant Features [5] []
  • MSER [6] [] []
  • Geometric Blur [7] []
  • Local Self-Similarity Descriptor [8] []
  • Global and Efficient Self-Similarity [9] []
  • Histogram of Oriented Graidents [10] [] []
  • GIST [11] []
  • Shape Context [12] []
  • Color Descriptor [13] []
  • Pyramids of Histograms of Oriented Gradients []
  • Space-Time Interest Points (STIP) [14][] []
  • Boundary Preserving Dense Local Regions [15][]
  • Weighted Histogram[]
  • Histogram-based Interest Points Detectors[][]
  • An OpenCV - C++ implementation of Local Self Similarity Descriptors []
  • Fast Sparse Representation with Prototypes[]
  • Corner Detection []
  • AGAST Corner Detector: faster than FAST and even FAST-ER[]
  • Real-time Facial Feature Detection using Conditional Regression Forests[]
  • Global and Efficient Self-Similarity for Object Classification and Detection[]
  • WαSH: Weighted α-Shapes for Local Feature Detection[]
  • HOG[]
  • Online Selection of Discriminative Tracking Features[]

 

二、图像分割Image Segmentation

  • Normalized Cut [1] []
  • Gerg Mori’ Superpixel code [2] []
  • Efficient Graph-based Image Segmentation [3] [] []
  • Mean-Shift Image Segmentation [4] [] []
  • OWT-UCM Hierarchical Segmentation [5] []
  • Turbepixels [6] [] [] []
  • Quick-Shift [7] []
  • SLIC Superpixels [8] []
  • Segmentation by Minimum Code Length [9] []
  • Biased Normalized Cut [10] []
  • Segmentation Tree [11-12] []
  • Entropy Rate Superpixel Segmentation [13] []
  • Fast Approximate Energy Minimization via Graph Cuts[][]
  • Efficient Planar Graph Cuts with Applications in Computer Vision[][]
  • Isoperimetric Graph Partitioning for Image Segmentation[][]
  • Random Walks for Image Segmentation[][]
  • Blossom V: A new implementation of a minimum cost perfect matching algorithm[]
  • An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Computer Vision[][]
  • Geodesic Star Convexity for Interactive Image Segmentation[]
  • Contour Detection and Image Segmentation Resources[][]
  • Biased Normalized Cuts[]
  • Max-flow/min-cut[]
  • Chan-Vese Segmentation using Level Set[]
  • A Toolbox of Level Set Methods[]
  • Re-initialization Free Level Set Evolution via Reaction Diffusion[]
  • Improved C-V active contour model[][]
  • A Variational Multiphase Level Set Approach to Simultaneous Segmentation and Bias Correction[][]
  • Level Set Method Research by Chunming Li[]
  • ClassCut for Unsupervised Class Segmentation[e]
  • SEEDS: Superpixels Extracted via Energy-Driven Sampling ][]

 

三、目标检测Object Detection

  • A simple object detector with boosting []
  • INRIA Object Detection and Localization Toolkit [1] []
  • Discriminatively Trained Deformable Part Models [2] []
  • Cascade Object Detection with Deformable Part Models [3] []
  • Poselet [4] []
  • Implicit Shape Model [5] []
  • Viola and Jones’s Face Detection [6] []
  • Bayesian Modelling of Dyanmic Scenes for Object Detection[][]
  • Hand detection using multiple proposals[]
  • Color Constancy, Intrinsic Images, and Shape Estimation[][]
  • Discriminatively trained deformable part models[]
  • Gradient Response Maps for Real-Time Detection of Texture-Less Objects: LineMOD []
  • Image Processing On Line[]
  • Robust Optical Flow Estimation[]
  • Where's Waldo: Matching People in Images of Crowds[]
  • Scalable Multi-class Object Detection[]
  • Class-Specific Hough Forests for Object Detection[]
  • Deformed Lattice Detection In Real-World Images[]
  • Discriminatively trained deformable part models[]

 

四、显著性检测Saliency Detection

  • Itti, Koch, and Niebur’ saliency detection [1] []
  • Frequency-tuned salient region detection [2] []
  • Saliency detection using maximum symmetric surround [3] []
  • Attention via Information Maximization [4] []
  • Context-aware saliency detection [5] []
  • Graph-based visual saliency [6] []
  • Saliency detection: A spectral residual approach. [7] []
  • Segmenting salient objects from images and videos. [8] []
  • Saliency Using Natural statistics. [9] []
  • Discriminant Saliency for Visual Recognition from Cluttered Scenes. [10] []
  • Learning to Predict Where Humans Look [11] []
  • Global Contrast based Salient Region Detection [12] []
  • Bayesian Saliency via Low and Mid Level Cues[]
  • Top-Down Visual Saliency via Joint CRF and Dictionary Learning[][]
  • Saliency Detection: A Spectral Residual Approach[]

 

五、图像分类、聚类Image Classification, Clustering

  • Pyramid Match [1] []
  • Spatial Pyramid Matching [2] []
  • Locality-constrained Linear Coding [3] [] []
  • Sparse Coding [4] [] []
  • Texture Classification [5] []
  • Multiple Kernels for Image Classification [6] []
  • Feature Combination [7] []
  • SuperParsing []
  • Large Scale Correlation Clustering Optimization[]
  • Detecting and Sketching the Common[]
  • Self-Tuning Spectral Clustering[][]
  • User Assisted Separation of Reflections from a Single Image Using a Sparsity Prior[][]
  • Filters for Texture Classification[]
  • Multiple Kernel Learning for Image Classification[]
  • SLIC Superpixels[]

 

六、抠图Image Matting

  • A Closed Form Solution to Natural Image Matting []
  • Spectral Matting []
  • Learning-based Matting []

 

七、目标跟踪Object Tracking

  • A Forest of Sensors - Tracking Adaptive Background Mixture Models []
  • Object Tracking via Partial Least Squares Analysis[][]
  • Robust Object Tracking with Online Multiple Instance Learning[][]
  • Online Visual Tracking with Histograms and Articulating Blocks[]
  • Incremental Learning for Robust Visual Tracking[]
  • Real-time Compressive Tracking[]
  • Robust Object Tracking via Sparsity-based Collaborative Model[]
  • Visual Tracking via Adaptive Structural Local Sparse Appearance Model[]
  • Online Discriminative Object Tracking with Local Sparse Representation[][]
  • Superpixel Tracking[]
  • Learning Hierarchical Image Representation with Sparsity, Saliency and Locality[][]
  • Online Multiple Support Instance Tracking [][]
  • Visual Tracking with Online Multiple Instance Learning[]
  • Object detection and recognition[]
  • Compressive Sensing Resources[]
  • Robust Real-Time Visual Tracking using Pixel-Wise Posteriors[]
  • Tracking-Learning-Detection[][]
  • the HandVu:vision-based hand gesture interface[]
  • Learning Probabilistic Non-Linear Latent Variable Models for Tracking Complex Activities[]

 

八、Kinect

  • Kinect toolbox[]
  • OpenNI[]
  • zouxy09 CSDN Blog[]
  • FingerTracker 手指跟踪[]

 

九、3D相关:

  • 3D Reconstruction of a Moving Object[] []
  • Shape From Shading Using Linear Approximation[]
  • Combining Shape from Shading and Stereo Depth Maps[][]
  • Shape from Shading: A Survey[][]
  • A Spatio-Temporal Descriptor based on 3D Gradients (HOG3D)[][]
  • Multi-camera Scene Reconstruction via Graph Cuts[][]
  • A Fast Marching Formulation of Perspective Shape from Shading under Frontal Illumination[][]
  • Reconstruction:3D Shape, Illumination, Shading, Reflectance, Texture[]
  • Monocular Tracking of 3D Human Motion with a Coordinated Mixture of Factor Analyzers[]
  • Learning 3-D Scene Structure from a Single Still Image[]

 

十、机器学习算法:

  • Matlab class for computing Approximate Nearest Nieghbor (ANN) [ providing interface to]
  • Random Sampling[]
  • Probabilistic Latent Semantic Analysis (pLSA)[]
  • FASTANN and FASTCLUSTER for approximate k-means (AKM)[]
  • Fast Intersection / Additive Kernel SVMs[]
  • SVM[]
  • Ensemble learning[]
  • Deep Learning[]
  • Deep Learning Methods for Vision[]
  • Neural Network for Recognition of Handwritten Digits[]
  • Training a deep autoencoder or a classifier on MNIST digits[]
  • THE MNIST DATABASE of handwritten digits[]
  • Ersatz:deep neural networks in the cloud[]
  • Deep Learning []
  • sparseLM : Sparse Levenberg-Marquardt nonlinear least squares in C/C++[]
  • Weka 3: Data Mining Software in Java[]
  • Invited talk "A Tutorial on Deep Learning" by Dr. Kai Yu (余凯)[]
  • CNN - Convolutional neural network class[]
  • Yann LeCun's Publications[]
  • LeNet-5, convolutional neural networks[]
  • Training a deep autoencoder or a classifier on MNIST digits[]
  • Deep Learning 大牛Geoffrey E. Hinton's HomePage[]
  • Multiple Instance Logistic Discriminant-based Metric Learning (MildML) and Logistic Discriminant-based Metric Learning (LDML)[]
  • Sparse coding simulation software[]
  • Visual Recognition and Machine Learning Summer School[]

 

十一、目标、行为识别Object, Action Recognition

  • Action Recognition by Dense Trajectories[][]
  • Action Recognition Using a Distributed Representation of Pose and Appearance[]
  • Recognition Using Regions[][]
  • 2D Articulated Human Pose Estimation[]
  • Fast Human Pose Estimation Using Appearance and Motion via Multi-Dimensional Boosting Regression[][]
  • Estimating Human Pose from Occluded Images[][]
  • Quasi-dense wide baseline matching[]
  • ChaLearn Gesture Challenge: Principal motion: PCA-based reconstruction of motion histograms[]
  • Real Time Head Pose Estimation with Random Regression Forests[]
  • 2D Action Recognition Serves 3D Human Pose Estimation[
  • A Hough Transform-Based Voting Framework for Action Recognition[
  • Motion Interchange Patterns for Action Recognition in Unconstrained Videos[
  • 2D articulated human pose estimation software[]
  • Learning and detecting shape models []
  • Progressive Search Space Reduction for Human Pose Estimation[]
  • Learning Non-Rigid 3D Shape from 2D Motion[]

 

十二、图像处理:

  • Distance Transforms of Sampled Functions[]
  • The Computer Vision Homepage[]
  • Efficient appearance distances between windows[]
  • Image Exploration algorithm[]
  • Motion Magnification 运动放大 []
  • Bilateral Filtering for Gray and Color Images 双边滤波器 []
  • A Fast Approximation of the Bilateral Filter using a Signal Processing Approach [

 

十三、一些实用工具:

  • EGT: a Toolbox for Multiple View Geometry and Visual Servoing[] []
  • a development kit of matlab mex functions for OpenCV library[]
  • Fast Artificial Neural Network Library[]

 

十四、人手及指尖检测与识别:

  • finger-detection-and-gesture-recognition []
  • Hand and Finger Detection using JavaCV[]
  • Hand and fingers detection[]

 

十五、场景解释:

  • Nonparametric Scene Parsing via Label Transfer []

 

十六、光流Optical flow

  • High accuracy optical flow using a theory for warping []
  • Dense Trajectories Video Description []
  • SIFT Flow: Dense Correspondence across Scenes and its Applications[]
  • KLT: An Implementation of the Kanade-Lucas-Tomasi Feature Tracker []
  • Tracking Cars Using Optical Flow[]
  • Secrets of optical flow estimation and their principles[]
  • implmentation of the Black and Anandan dense optical flow method[]
  • Optical Flow Computation[]
  • Beyond Pixels: Exploring New Representations and Applications for Motion Analysis[]
  • A Database and Evaluation Methodology for Optical Flow[]
  • optical flow relative[]
  • Robust Optical Flow Estimation []
  • optical flow[]

 

十七、图像检索Image Retrieval

  • Semi-Supervised Distance Metric Learning for Collaborative Image Retrieval ][]

 

十八、马尔科夫随机场Markov Random Fields

  • Markov Random Fields for Super-Resolution ]
  • A Comparative Study of Energy Minimization Methods for Markov Random Fields with Smoothness-Based Priors []

 

十九、运动检测Motion detection

  • Moving Object Extraction, Using Models or Analysis of Regions ]
  • Background Subtraction: Experiments and Improvements for ViBe []
  • A Self-Organizing Approach to Background Subtraction for Visual Surveillance Applications []
  • changedetection.net: A new change detection benchmark dataset[]
  • ViBe - a powerful technique for background detection and subtraction in video sequences[]
  • Background Subtraction Program[]
  • Motion Detection Algorithms[]
  • Stuttgart Artificial Background Subtraction Dataset[]
  • Object Detection, Motion Estimation, and Tracking[]

转载于:https://www.cnblogs.com/xwolfs/p/3945450.html

你可能感兴趣的文章
【中文】Joomla1.7扩展介绍之Googlemaps Plugin
查看>>
【中文】Joomla1.7扩展介绍之Fabrik (强大的表单处理能力)
查看>>
joomla 1.7遇到的麻烦——不能删除模板的解决办法
查看>>
spring @component的作用
查看>>
eclipse编辑窗口不见了(打开左边的java、xml文件,中间不会显示代码)
查看>>
1.JSONObject与JSONArray的使用
查看>>
34.TokenInterceptor防止表单重复提交
查看>>
cogs 362. [CEOI2004]锯木厂选址
查看>>
Python中处理时间 —— time模块
查看>>
Twisted模块示例
查看>>
WCF优化的几个常规思路
查看>>
Sql Server 因为触发器问题导致数据库更新报错“在触发器执行过程中引发了错误,批处理已中止”的问题处理...
查看>>
npm-debug.log文件出现原因
查看>>
You may remembe MBT Changa
查看>>
洛谷P3723 [AH2017/HNOI2017]礼物(FFT)
查看>>
洛谷P4705 玩游戏(生成函数+多项式运算)
查看>>
Vue API(directives) 自定义指令
查看>>
python中的类的成员变量以及property函数
查看>>
ECMAScript 5 —— 单体内置对象之Math对象
查看>>
svn服务器发生变更,如何切换
查看>>